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1. vLLM简介

vLLM 是 UC Berkeley 等开源的⼀款⾼吞吐、内存⾼效的⼤模型推理与服务引擎。它的
核⼼创新在于 PagedAttention 算法，将注意⼒层的 Key-Value 缓存（KV cache）以类
似操作系统虚拟内存分⻚的⽅式管理。通过这⼀创新，vLLM 实现了远超传统⽅案的推
理性能。下图展示了⼀个13B的模型在A100 40GB的gpu上做推理时的显存占⽤分配，从
这张图中我们可以直观感受到推理中KV cache对显存的占⽤。因此，如何优化KV 

cache，节省显存，提⾼推理吞吐量，就成了LLM推理框架需要解决的重点问题。

本次分享针对vLLM v0进⾏，vLLM v1针对vLLM v0存在的⼀些问题进⾏了改进
，分享过程中对部分内容会稍作提及，后续有机会也会为⼤家带来更详细的vLL
M v1的分享～



2026/2/2 20:25从PagedAttention到调度器：vLLM⾼效推理全链路揭秘@陶源20260105

第3/38⻚https://ku.baidu-int.com/knowledge/HFVrC7hq1Q/pKzJfZczuc/WjGjiS_SK_/ht-_3CjLmKeDb8

vLLM 让⼤模型推理服务变得更“便宜”和“⾼效”

2. vLLM⾼效的关键

vLLM 的架构围绕提⾼ GPU 利⽤率和内存利⽤率⽽设计。其关键包括⾼效的推理流⽔线
（连续批处理调度）和创新的内存管理策略（PagedAttention）。

2.1. 静态批处理与连续批处理

传统推理框架常采⽤静态批处理：

⼯作⽅式：收集多个请求 -> 组成⼀个批次 -> ⼀次性输⼊模型 -> 所有请求同时计算 
-> 所有请求完成后，释放整个批次，再处理下⼀批。

•

致命缺陷：⽊桶效应。在⽣成任务中，每个请求的输⼊⻓度和输出⻓度（即需要⽣

成的token数）都不同。⼀个请求可能⽣成10个token就结束了，⽽另⼀个需要100个
token。快的请求必须等待慢的请求全部完成后，整个批次才能解散，导致GPU计算
资源在每⼀步都有⼤量闲置。

•

静态批处理示意图
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连续批处理调度在每个⽣成迭代（每产⽣⼀个新 token）的粒度上动态管理批次：

每次迭代时，调度器将当前所有未完成的请求组成批次，在 GPU 上并⾏推理⼀个 
token。

•

只要某些请求完成了当前 token 的⽣成，调度器⽴即回收其占⽤的计算槽和显存

⻚，下⼀迭代就可⽴即将新到达的请求补充进来，不⽤等待其他请求完成。

•

通过上述机制，vLLM 的推理流⽔线能够持续地接纳新请求并⽣成输出。GPU ⼏乎
始终保持忙碌状态，减少空闲和等待时间，⼤幅提升了整体吞吐量。

•

连续批处理示意图

2.2. 内存管理策略：PagedAttention

2.2.1 为KV cache分配存储空间的常规⽅式

在常规的推理框架中，当我们的服务接收到⼀条请求时，它会为这条请求中的prompts分
配gpu显存空间，其中就包括对KV cache的分配。由于推理所⽣成的序列⻓度⼤⼩是⽆
法事先预知的，所以⼤部分框架会按照(batch_size, max_seq_len)这样的固定尺⼨，

在gpu显存上预先为⼀条请求开辟⼀块连续的矩形存储空间。

我们假设max_seq_len = 8，所以当第1条请求(prompt1)过来时，我们的推理框架为
它安排了(1, 8)⼤⼩的连续存储空间。

•

当第2条请求（prompt2）过来时，同样也需要1块(1, 8)⼤⼩的存储空间。•
但此时prompt1所在的位置上，只剩3个空格⼦了，所以它只能另起⼀⾏做存储。对
prompt3也是同理。

•
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常规kc cache的存储分配

观察整个KV cache排布，你会发现它们的⽑病在于太过“静态化”。当你⽆法预知序列

⼤⼩时，你为什么⼀定要死板地为每个序列预留KV cache空间呢？为什么不能做得更动
态化⼀些，即“⽤多少占多少”呢？这样我们就能减少上述这些存储碎⽚，使得每⼀时刻

推理服务能处理的请求更多，提⾼吞吐量，这就是vLLM在做的核⼼事情，我们先通过⼀
张实验图来感受下vLLM在显存利⽤上的改进效果（VS 其它推理框架）：

vLLM让珍贵且昂贵的GPU内存“物尽其⽤”了

vLLM是通过什么技术，动态地为请求分配KV cache显存，提升显存利⽤率的

？
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为了解决KV缓存带来的内存消耗低效的问题，引⼊了PagedAttention。

2.2.2. PagedAttention机制解析

vLLM 的 PagedAttention 从操作系统的分⻚存储获得灵感，彻底改变了 KV 缓存的管理
⽅式：

分⻚存储思想：不再为每个请求分配⼀整块连续内存，⽽是将每个序列的 KV 缓存

拆分为若⼲固定⼤⼩的⼩块（KV ⻚）。每个块可存储预定数量（例如 N 个）token 
的键/值向量。系统仅在需要时（⽣成新 token 时）按块分配内存，并通过⼀个块表
（block table）维护序列的逻辑块到物理内存块的映射。

•

⾮连续存储：得益于块表映射，序列的各块在物理显存中⽆需连续。逻辑上每个序

列的 token 仍按顺序划分到第1块、第2块…，但实际这些块可以分散在内存任意

位置。这样避免了请求间争夺⼤块连续内存导致的外部碎⽚。通过这种⽅式，每个

request都会认为⾃⼰在⼀个连续且充⾜的存储空间上操作，尽管物理上这些数据

的存储并不是连续的。

•

按需分配：当序列⽣成新 token 时，vLLM 先尝试放⼊该序列当前的最后⼀个块；如
果该块已满，则向 GPU 内存的空闲块池申请⼀个新物理块，映射为下⼀个逻辑块。
整个⽣成过程中，只分配实际需要的块，不预留整段空间，从⽽将内存浪费降⾄极

低。

•

⾼效释放：当请求结束或被中⽌，其占⽤的物理块会⽴即归还空闲池，⽆需执⾏⼤

范围的显存释放操作，减少碎⽚整理开销。由于所有块⼤⼩相同，释放后很容易被

其它序列重新利⽤，也不会产⽣严重碎⽚。

•

2.2.3 PagedAttention在不同场景下的运作

处理单个请求•

处理单个请求时，PagedAttention运作流程

处理多个不相同请求•
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处理多个不相同请求时，PagedAttention运作流程

处理多个相同请求（Parallel Sampling）•
Prefill阶段：◦
逻辑块：逻辑块独⽴，每个Sample有各⾃的逻辑块。▪
物理块：⽂字完全相同，共享物理空间。▪

Decode阶段：◦
两个Sample分别进⾏推理，得到fathers和mothers。▪
逻辑块中，两个Sample分别保存各⾃的逻辑块。▪
物理块中，触发copy-on-write机制：由于fathers/mothers是两个完全不同的
token，因此对物理块block1触发复制机制，即在物理内存上新开辟⼀块空
间。此时物理块block1只和A2的逻辑块block1映射，将其ref count减去1；
物理块block3只和A1的逻辑块block1映射，将其ref count设为1。

▪

总结起来，vLLM节省KV cache显存的核⼼思想是，对于相同数据对应的KV 
cache，能复⽤则尽量复⽤；⽆法复⽤时，再考虑开辟新的物理空间。

◦

处理多个请求时，PagedAttention运作流程
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Beam Search：束搜索，这是LLM常⽤的deocde策略之⼀，即在每个decode阶段，
我不是只产⽣1个token，⽽是产⽣top k个token（这⾥k也被称为束宽）。top k个
token必然对应着此刻的top k个序列。我把这top k个序列喂给模型，假设词表的⼤⼩
为|V|，那么在下⼀时刻，我就要在k*|V|个候选者中再选出top k，以此类推。不难想
象每⼀时刻我把top k序列喂给模型时，它们的前置token中有⼤量的KV cache是重复
的。

•

Beam Search

我们从右往左来看这张图。虚线位置表示“当前decoding时刻”，beam width = 4。图中
所有的block皆为逻辑块。

因为beam width = 4，这意味着根据beam search算法，在当前阶段我们⽣成了top 4
个概率最⼤的token（我们记这4个token为beam candidate 0/1/2/3），它们分别装
在block5，block6，block7和block8中。

•

现在我们继续使⽤beam search算法做decoding，继续找出top 4个最可能的next 
token。经过我们的计算，这top 4 next token，有2个来⾃beam candidate 1，有2个
来⾃beam candidate 2。因此我们在block6中引出block9和block10，⽤于装其中两
个top 2 next token；对block7也是同理。

•

现在，block9/10/11/12中装的top 4 next token，就成为新的beam candidates，可以
按照和上述⼀样的⽅式继续做beam search算法。⽽对于block5和block8，它们已经
在beam search的搜索算法中被淘汰了，后续⽣成的token也不会和它们产⽣关系，
所以可以清除掉这两个逻辑块，并释放它们对应的物理块的内存空间。

•

好，我们继续往左边来看这幅图。block3引出block5/6/7，block4引出block8，这意
味着当前这4个top4 token，是上⼀个timestep下candidate1和candidate3相关序列⽣
成的（candidate0和2的block没有画出，是因为它们所在的序列被beam search算法
淘汰了，因此没有画出的必要）。由于block8已经被淘汰，所以block4也相继被淘
汰，并释放对应的物理内存空间。

•

由此往左⼀路推，直到block0为⽌（block0代表着prompt，因此被beam seach中所

有的序列共享）。这⼀路上，我们都根据最新时刻的beam search decoding结果，释
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放掉不再被需要的逻辑块和对应的物理内存空间，达到节省显存的⽬的。

2.2.4. PagedAttention的优势

PagedAttention 带来了多⽅⾯的优势：

内存利⽤率⼤幅提升：由于仅为实际⽣成的内容分配内存，并消除了跨请求的⼤块

预留，GPU 内存碎⽚和浪费显著降低。这使得同等显存下可以并发容纳更多请求的 
KV 缓存，从⽽⽀持更⼤的有效批量，提升吞吐。

•

⽀持⻓序列和⼤模型：逻辑-物理分离后，vLLM 不需要提前为最⼤⻓度保留显存，
只要有空闲块就能继续扩展序列⻓度。对于超⻓输⼊/输出或模型参数⾮常⼤的场
景，PagedAttention 也能灵活调度内存，⽤完再申请新的块。此外，vLLM 还⽀持

在GPU显存不⾜时，将部分序列的KV块交换（swap）到CPU内存，并在其重新调

度时通过重算快速恢复。

•

内存共享与分⽀开销降低：PagedAttention 天然⽀持KV 缓存共享。利⽤块表的灵
活映射，不同序列可以指向相同的物理块实现内容共享。典型应⽤是在并⾏采样和

Beam Search等⽣成分⽀场景：多个输出序列共享相同的输⼊ prompt 或共同前
缀。vLLM 中这些序列的前缀部分可以共⽤同⼀批物理KV块，避免重复存储和计
算。当分⽀真正发⽣差异（如Beam Search某条beam⽣成不同新token），仅对新
增部分分配块即可；若共享块需要修改，则触发写时复制（Copy-on-Write）另给新
块，保证线程安全。通过共享前缀，并⾏采样可减少约6%~30%的内存占⽤，Beam 
Search 减少约44%~66% 的KV内存。这带来明显性能收益：复杂采样算法的显存开
销降低最多⼀半，令其在服务中更实⽤。

•

综上，PagedAttention 将传统 LLM 推理中低效的内存管理变成了类似操作系统虚拟内存
的按需分⻚。⼏乎所有内存浪费被限制在每个序列最后⼀个未填满的块内。实验表明，

这种改进让系统的GPU内存利⽤率接近最优，有效批量显著增加，从⽽带来吞吐量的⼤
幅提升。PagedAttention 正是 vLLM 性能⻜跃的“秘密武器”。

2.3. 调度与抢占

当采⽤动态分配显存的办法时，虽然明⾯上同⼀时刻能处理更多的prompt了，
但因为没有为每个prompt预留充⾜的显存空间。如果在某⼀时刻整个显存被打
满了，⽽此时所有的prompt都没做完推理，那该怎么办？

2.3.1. vLLM的总原则

先来先服务（FCFS），后来先抢占，gpu不够就先swap到cpu上。

后来先抢占•
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当⼀堆请求到达vLLM服务器，导致gpu显存不⾜时，vLLM会暂停这堆请求中最
后到达的那些请求的推理，同时将它们相关的KV cache从gpu上释放掉，以便

为更早到达的请求留出⾜够的gpu空间，让它们完成推理任务。如果不这样做

的话，各个请求间相互争夺gpu资源，最终将导致没有任何⼀个请求能完成推理
任务。等到先来的请求做完了推理，vLLM调度器认为gpu上有⾜够的空间了，
就能恢复那些被中断的请求的执⾏了。

◦

2.3.2. “后来先抢占”的实现

对于这些因gpu资源不⾜⽽被抢占的任务，vLLM要完成两件事：

暂停它们的执⾏，同时将与之相关的KV cache从gpu上释放掉•
等gpu资源充⾜时，重新恢复它们的执⾏•

针对这两件事，vLLM分别设计了Swapping（交换策略）和Recomputation（重计算

策略）来解决。我们来细看这两个策略。

（1）Swapping

对于被抢占的请求，vLLM要将其KV cache从gpu上释放掉，那么：
问题1：该释放哪些KV cache？•
问题2：要把这些KV cache释放到哪⾥去？•

先看问题1。在vLLM中，⼀般采取的是all-or-nothing策略，即释放被抢占请求的所有

block。

再来看问题2。对于这些被选中要释放的KV block，如果将它们直接丢掉，那未免过于

浪费。vLLM采⽤的做法是将其从gpu上交换（Swap）到cpu上。这样等到gpu显存充
⾜时，再把这些block从cpu上重载回来。

（2）Recomputation

知道了Swapping机制，重计算的过程也很好理解了：对于有些任务，当它们因为资源不
⾜⽽被抢占时，可以不做swap，⽽是直接释放它们的物理块，把它们重新放⼊等待处理
的队列中，等后续资源充⾜时再重新从prefill阶段开始做推理。

2.4. 总结

PageAttention为动态批处理提供了灵活、⾼效的内存管理基础，使其调度能⼒得以充

分发挥；⽽动态批处理则将PageAttention节省的内存资源转化为实实在在的计算吞吐

量提升。



2026/2/2 20:25从PagedAttention到调度器：vLLM⾼效推理全链路揭秘@陶源20260105

第11/38⻚https://ku.baidu-int.com/knowledge/HFVrC7hq1Q/pKzJfZczuc/WjGjiS_SK_/ht-_3CjLmKeDb8

3. vLLM整体架构设计

vLLM代码架构

3.1. Centralized Controller

Centralized Controller，也就是前⽂我们所说的调度器(Scheduler)。

调度器的主要作⽤就是，在每1个推理阶段，决定要把哪些数据送给模型做推理，

同时负责给这些模型分配KV Cache物理块。但要注意，它只是分配了物理块的id，
⽽不是物理块本身。物理块的实际分配是模型在推理过程中根据物理块id来操作的，
也就是CacheEngine做的事情。

•
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Scheduler结构

self.policy：是vLLM⾃定义的⼀个Policy实例，⽬标是根据调度器总策略（FCFS，First 
Come First Serve，先来先服务）原则，对各个队列⾥的seq_group按照其arrival time进
⾏排序。

self.prev_time：上⼀次调度发起的时间点，初始化为0。我们知道每执⾏1次推理阶段
前，调度器都要做⼀次调度，这个变量存放的就是上次调度发起的时间点。

self.prev_prompt：取值为True/False，初始化为False。若上⼀次调度时，调度器有

从waiting队列中取出seq_group做推理，即为True，否则为False。

self.last_prompt_latency：记录“当前调度时刻（now） - 最后⼀次有从waiting队列

中取数做推理的那个调度时刻”的差值（并不是每⼀次调度时，调度器⼀定都会从

waiting队列中取seq_group，它可能依旧继续对running队列中的数据做推理），初始化
为0。

BlockManager：物理块管理器。这也是vLLM⾃定义的⼀个class。物理块管理器这个
class下⼜维护着两个重要属性：

BlockAllocator：物理块分配者，负责实际为seq做物理块的分配、释放、拷⻉等操
作。其下⼜分成self.gpu_allocator和self.cpu_allocator两种类型，分别管理gpu和
cpu上的物理块。

•

self.block_tables：负责维护每个seq下的物理块列表。•
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3.2. Distributed Workers

Distributed Workers，也就是分布式系统，你可以将每个worker理解成⼀块gpu。它的作
⽤是将我们要使⽤的模型load到各块卡上，然后对Controller传来的数据做1次推理，返
回相关结果。

Worker：在硬件上，它指gpu；在代码上，它指的是Worker实例（每个gpu上的进
程维护⾃⼰的Worker实例）。在每个Worker实例中⼜管控着如下两个重要实例：

•

CacheEngine：负责管控gpu/cpu上的KV cache物理块（调度器的block 
manager只负责物理块id的分配，CacheEngine则是根据这个id分配结果实打实
地在管理物理块中的数据）

◦

Worker.model：负责加载模型，并执⾏推理。PagedAttention的相关逻辑，就
维护这个实例关联的代码下。

◦

4. vLLM运作流程

当⼀条请求过来时，整个vLLM是怎么运作的呢？

离线批处理进⾏调⽤ Python



2026/2/2 20:25从PagedAttention到调度器：vLLM⾼效推理全链路揭秘@陶源20260105

第14/38⻚https://ku.baidu-int.com/knowledge/HFVrC7hq1Q/pKzJfZczuc/WjGjiS_SK_/ht-_3CjLmKeDb8

from vllm import LLM, SamplingParams

if __name == "__main__":
    # Sample prompts.
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]
    # Create a sampling params object.
    sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

    # 创建llm实例，在这个过程中也创建了llm实例下维护的llm_engine
    llm = LLM(model="facebook/opt-125m")
    # 执⾏offline batching推理，得到这批prompts的输出
    outputs = llm.generate(prompts, sampling_params)
    # 打印输出
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt: {prompt!r}, Generated text: 
{generated_text!r}")

1

2
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4

5
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4.1. 加载模型
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Python

# 
===================================================================
========
# 初始化vLLM offline batched inference实例，并加载指定模型
# 
===================================================================
========
llm = LLM(model="facebook/opt-125m")

1

2

3

4

这⾥在做的事很直观：把base model加载到worker上。

4.2. 预分配显存
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实例化了⼀个离线批处理的vLLM对象。其本质是实例化了⼀个内核引擎LLMEngine对
象。在执⾏这个步骤时，LLMEngine会执⾏⼀次模拟实验（profiling），来判断需要在
gpu上预留多少的显存空间给KV Cache block。vLLM管这个步骤叫
profile_num_available_blocks。

加载预分配的KV Cache到gpu上•

当我们确定好KV Cache block的⼤⼩后，我们就可以创建empty tensor，将其先放置到
gpu上，实现显存的预分配。以后这块显存就是专⻔⽤来做KV Cache的了。也正是因为
这种预分配，你可能会发现在vLLM初始化后，显存的占⽤⽐你预想地要多（⾼过模型⼤
⼩），这就是预分配起的作⽤。

4.3. Scheduler调度



2026/2/2 20:25从PagedAttention到调度器：vLLM⾼效推理全链路揭秘@陶源20260105

第17/38⻚https://ku.baidu-int.com/knowledge/HFVrC7hq1Q/pKzJfZczuc/WjGjiS_SK_/ht-_3CjLmKeDb8



2026/2/2 20:25从PagedAttention到调度器：vLLM⾼效推理全链路揭秘@陶源20260105

第18/38⻚https://ku.baidu-int.com/knowledge/HFVrC7hq1Q/pKzJfZczuc/WjGjiS_SK_/ht-_3CjLmKeDb8

self.waiting, self.running, self.swapped：这三个都是python的deque()实
例（双端队列，允许你从队列两侧添加或删除元素）。

•

waiting队列⽤于存放所有还未开始做推理的seq_group，“未开始”指
连prefill阶段都没有经历过。所以waiting队列中的seq_group只有⼀个s
eq，即是原始的prompt。

◦

running队列⽤于存放当前正在做推理的seq_group。更准确地说，

它存放的是上1个推理阶段被送去做推理的seq_group们，在开始新⼀

轮推理阶段时，调度器会根据本轮的筛选结果，更新running队列，即
决定本轮要送哪些seq_group去做推理。

◦

swapped队列⽤于存放被抢占的seq_group。若⼀个seq_group被抢
占，调度器会对它执⾏swap或recomputation操作，分别对应着将它送
去swapped队列或waiting队列。

◦

请求发起：The future of Artifical Intelligence•
到达LLMEngine•
分词◦
加⼊调度序列：waiting queue◦

调度器Scheduler进⾏队列管理：筛选出需要运⾏的⼀组请求•
当KV块内存有空闲：waiting请求变为running◦
当没有KV块内存⽤于⽣成新token◦

running变为swapping▪
running变为waiting▪

BlockSpaceManager进⾏块空间管理：•
给新的KVCache分配空间◦
处理块共享◦
交换/删除被抢占的KV块◦

BlockAllocator：当BlockSpaceManager下达“分配”或者“交换”命令时，块分配器在真
实的物理内存上进⾏分配和回收。

•

4.4. 执⾏推理
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Distributed Workers接受来⾃Scheduler的请求，分发到各个worker上去做推理。

CacheEngine负责管理实际KVCache。•
Worker.model负责加载模型，进⾏推理。•

推理⼊⼝： outputs = llm.generate(prompts, sampling_params)

当我们调⽤ generate() 时，它实际做了两件事情：
_add_request_add_request_add_request_add_request ：将输⼊数据传给LLMEngine：把每1个prompt包装成⼀个

SequenceGroup对象（"1个prompt -> 多个outputs"的结构）。把包装成
SequenceGroup对象的数据加⼊调度器（Scheduler）的waiting队列，等待处理。

•

_run_engine_run_engine_run_engine_run_engine ：执⾏推理：只要调度器的waiting/running/swapped队列⾮空，我
们就认为此时这批batch还没有做完推理，这时我们就会调⽤LLMEngine的step()函

数，来完成1次调度以决定要送哪些数据去做推理。

•

SequenceGroup

可能出现"1个prompt -> 多个outputs"的情况。那是否能设计⼀种办法，对1个pr
ompt下所有的outputs进⾏集中管理，来⽅便vLLM更好做推理呢？

采样参数n=4,需要四种不同的output
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SequenceGroup结构

到这⾥不妨思考⼀下，vLLM v0的整个运作流程有没有哪些可以优化的地⽅？

vLLM v1的优化，还是以offline batching为例:
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vllm v1将 请求的pre-process和输出结果的post-process 与 实际的推理过
程 拆分在2个不同的进程中(process0, process1)。

•

Client负责 请求的pre-process和输出结果的post-process ，EngineCore负

责 实际的推理过程 ，不同进程间使⽤ZMQ来通信数据。
•

https://zhida.zhihu.com/search?content_id=257161760&content_type=Article&match_order=1&q=ZMQ&zhida_source=entity
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通过这样的进程拆分，在更好实现cpu和gpu运作的overlap的同时，也将各种模型复
杂的前置和后置处理模块化，统⼀交给processor和output_processor进⾏管理。

•

5. Scheduler

5.1. 调度器结构

Scheduler结构

5.2. 整体调度策略



2026/2/2 20:25从PagedAttention到调度器：vLLM⾼效推理全链路揭秘@陶源20260105

第23/38⻚https://ku.baidu-int.com/knowledge/HFVrC7hq1Q/pKzJfZczuc/WjGjiS_SK_/ht-_3CjLmKeDb8

调度策略

running队列中的seq_group不⼀定能继续在本次调度中被选中做推理，这是因为gpu
上KV cache的使⽤情况⼀直在变动，以及waiting队列中持续有新的请求进来的原因。所
以调度策略的职责就是要根据这些变动，对送⼊模型做推理的数据做动态规划。

总结来说：

如果当前swapped队列为空，那就去检查是否能从waiting队列中调度seq_group，
直到不满⾜调度条件为⽌（gpu空间不⾜，或waiting队列已为空等）。此时，1个推
理阶段中，所有的seq_group都处在prefill阶段。

•

如果当前swapped队列⾮空，或者⽆法从waiting队列中调度任何seq_group时：•
检查是否能从running队列中调度seq_group，直到不满⾜调度条件为⽌。◦
若本次⽆新的被抢占的seq_group，且swapped队列⾮空，就检查是否能从
swapped队列中调度seq_group，直到不满⾜调度条件为⽌。

◦

此时，1个推理阶段中，所有的seq_group要么全来⾃running队列，要么来⾃running 

+ swapped队列，它们都处在decode阶段。

⾄此我们要记住vLLM调度中⾮常重要的⼀点：在1个推理阶段中，所有的seq_group

要么全部处在prefill阶段。要么全部处在decode阶段。

你可能想问：为什么要以swapped是否⾮空为判断⼊⼝呢？
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这是因为，如果当前调度步骤中swapped队列⾮空，说明在之前的调度步骤中这些可怜
的seq_group因为资源不⾜被抢占，⽽停滞了推理。所以根据FCFS规则，当gpu上有充

⾜资源时，我们应该先考虑它们，⽽不是考虑waiting队列中新来的那些seq_group。

同理，在图中你会发现，当我们进⼊对running队列的调度时（图中红⾊分⽀），我们会
根据“本次调度是否有新的被抢占的seq_group”，来决定要不要调度swapped队列中的
数据。这个理由也很简单：在本次调度中，我就是因为考虑到gpu空间不⾜的⻛险，我
才新抢占了⼀批序列。既然存在这个⻛险，我就最好不要再去已有的swapped队列中继
续调度seq_group了。

5.3. _passed_delay：判断调度waiting队列的时间点

在5.1的流程图中，我们会看到进⼊waiting循环的判断条件之⼀是：waiting队

列是否达到调度间隔阈值。这是个什么东⻄？⼜为什么要设置这样⼀个阈值呢

？

我们知道模型在做推理时，waiting队列中是源源不断有seq_group进来的，⼀旦vLLM选
择调度waiting队列，它就会停下对running/swapped中seq_group的decode处理，转⽽
去做waiting中seq_group的prefill，也即vLLM必须在新来的seq_group和已经在做推理

的seq_group间取得⼀种均衡：既不能完全不管新来的请求，也不能耽误正在做推理

的请求。所以“waiting队列调度间隔阈值”就是来控制这种均衡的：

调度间隔设置得太⼩，每次调度都只关⼼waiting中的新请求，这样发送旧请求的⽤
户就迟迟得不到反馈结果。且此时waiting队列中积累的新请求数量可能⽐较少，不
利于做batching，浪费了并发处理的能⼒。

•

调度间隔设置得太⼤，waiting中的请求持续挤压，同样对vLLM推理的整体吞吐有影
响。

•

5.4. can_allocate：能否为seq_group分配物理块做prefill
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通过了调度时间阈值的判断条件，现在我们顺利从waiting中取出⼀个seq_group，我们
将对它进⾏prefill操作。所以这⾥我们必须先判断：gpu上是否有充⾜的空间为该

seq_group分配物理块做prefill，根据5.1中绘制的调度器结构，这个操作当然是由我们
的self.block_manager来做。

5.5. can_append_slot：能否为seq_group分配物理块做
decode

我们从running队列中调度seq_group时，我们也会判断是否能为该seq_group分配物理
块。但这时，我们的物理块空间是⽤来做decode的（给每个seq分配1个token的位

置），⽽不是⽤来做prefill的（给每个seq分配若⼲个token的位置），所以这⾥我们

采取的是另⼀种判断⽅法 can_append_slotcan_append_slotcan_append_slotcan_append_slot 。

更具体来说，running队列中seq_group下的n个seqs在上1个推理阶段共⽣成了n个
token。在本次调度中，我们要先为这n个token分配物理块空间，⽤于存放它们在本次调
度中即将产⽣的KV值。我们知道：

当往1个seq的物理块上添加1个token时，可能有两种情况：•
之前的物理块满了，所以我新开1个物理块给它◦
之前的物理块没满，我直接添加在最后⼀个物理块的空槽位上◦
所以，对于1个seq来说，最坏的情况就是添加1个物理块；对于n个seqs来

说，最坏的情况就是添加n个物理块（想想前⾯讲过的copy-on-write机制）
◦
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对于1个seq_group，除了那些标记为“finish”的seq外，其余seqs要么⼀起送去推

理，要么⼀起不送去推理。即它们是集体⾏动的

•

所以，判断能否对⼀个正在running的seq_group继续做推理的最保守的⽅式，就是判

断当前可⽤的物理块数量是否⾄少为n。

5.6. preempt：抢占策略

抢占策略的核⼼逻辑：

在若⼲个推理阶段后，gpu上的资源不够了，这个seq_group不幸被调度器抢占

（preemption），它相关的KV block也被swap out到cpu上。此时所有seq的状态变为
swapped。这⾥要注意，当⼀个seq_group被抢占时，对它的处理有两种⽅式：

Swap：如果该seq_group剩余⽣命周期中并⾏运⾏的最⼤seq数量 > 1，此时会采

取swap策略，即把seq_group下【所有】seq的KV block从gpu上卸载到cpu上。
（seq数量⽐较多，直接把算出的KV block抛弃，⽐较可惜）

•

Recomputation：如果该seq_group剩余⽣命周期中并⾏运⾏的最⼤seq数量 = 

1，此时会采取recomputation策略，即把该seq_group相关的物理块都释放掉，然
后将它重新放回waiting队列中(放在最前⾯)。等下次它被选中推理时，就是从prefill
阶段开始重新推理了，因此被称为“重计算”。（seq数量少，重新计算KV block的成
本不⾼）

•

5.7. vLLM v1的改进

在V0的策略中，每次调度步骤要么全是做prefill的请求，要么全是做decode的请求，

除此以外，调度器中维护着waiting，running，swapped三个队列，整体来说调度策

略⽐较复杂。

在V1中，调度策略简化许多，最主要的就是允许单次调度步骤中同时调度prefill和

decode请求，同时调度器中只维护waiting和running队列。我们从vllm官⽅blog中来
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看下V1的整体调度思想

如图所示：

⾸先，vllm会对单次调度步骤设置⼀个 token_budgettoken_budgettoken_budgettoken_budget ，它⽤来决定每次调度中
最多允许“计算”多少个token。这个token_budget可以由⽤户通

过 scheduler_config.max_num_batched_tokens 进⾏配置。在我们的图例
中token_budget = 10

•

假设此时waiting队列中有3个R1，R2，R3三个请求（prompts），⻓度分别为3，
5，12。请求已经按照到来的先后顺序排列好了。Vllm v1依然采⽤的是FCFS原则

（First come First serve），按先来后到的顺序处理请求。

•

step0：•
调度器开始执⾏调度。根据某种策略，调度器决定将【R1的3个token】，【R2
的5个token】都算⼊本次调度步骤中。此时token_budget = 10 - 3 - 5 = 2。

◦

R3有12个token需要计算，但本轮调度的token_budget只剩2个，所以只取R3的
2个token加⼊本次调度中

◦

R1，R2和R3都会从waiting队列转移到running队列上◦
step1:•
调度器开始执⾏新⼀轮调度。此时R1和R2都做完了prefill，进⼊decode阶段，
它们待计算的token都只有1个。R3仍在prefill阶段，并根据token_budget再送⼊
8个token进⼊本轮调度

◦

以此类推，可以发现，直到step3为⽌，最⻓的R3才做完了prefill，进⼊decode阶
段。

•

6. BlockManager

6.1. BlockManager结构
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BlockManager这个class下⼜维护着两个重要属性：

BlockAllocatorBlockAllocatorBlockAllocatorBlockAllocator ：物理块分配者，负责实际为seq做物理块的分配、释放、拷

⻉等操作。其下⼜分成 self.gpu_allocator 和 self.cpu_allocator 两种
类型，分别管理gpu和cpu上的物理块。

•

self.block_tablesself.block_tablesself.block_tablesself.block_tables ：负责维护每个seq下的物理块列表，本质上它是⼀个字

典，形式如 {seq_id: List[PhysicalTokenBlock]}{seq_id: List[PhysicalTokenBlock]}{seq_id: List[PhysicalTokenBlock]}{seq_id: List[PhysicalTokenBlock]} 。注意，这个字典维
护着【所有】seq_group下seq的物理块，⽽不是单独某⼀个seq的。因为调度器是
全局的，所以它下⾯的的BlockManager⾃然也是全局的。

•

其中，BlockAllocator⼜分成两种类型：

CachedBlockAllocatorCachedBlockAllocatorCachedBlockAllocatorCachedBlockAllocator ：按照prefix caching的思想来分配和管理物理块。

在前⾯的介绍中，我们提过有些prompts中可能含有类似system message（例如，
“假设你是⼀个能提供帮助的⾏⻋导航”）E）等prefix信息，带有这些相同prefix信息
的prompt完全可以共享⽤于存放prefix的物理块，这样既节省显存，也不⽤再对
prefix做推理。

•

UncachedBlockAllocatorUncachedBlockAllocatorUncachedBlockAllocatorUncachedBlockAllocator ：正常分配和管理物理块，没有额外实现prefix 

caching的功能。
•

6.2. UncachedBlockAllocator

在整体调度策略的讲解中，我们明确了⾮常重要的⼀点：在vllm的1个推理阶段，所有

的seq_group要么⼀起做prefill，要么⼀起做decode。这也意味着，某次调度的结

果，要么全部来⾃waiting队列（等待做prefill的），要么全部来⾃running或者

running + swapped队列（等待做decode的）。

6.2.1. 为waiting队列中的seq_group分配prefill需要的物理块



2026/2/2 20:25从PagedAttention到调度器：vLLM⾼效推理全链路揭秘@陶源20260105

第29/38⻚https://ku.baidu-int.com/knowledge/HFVrC7hq1Q/pKzJfZczuc/WjGjiS_SK_/ht-_3CjLmKeDb8

调⽤ self.block_manager.can_allocate(seq_group) ⽅法，判断当前
gpu上是否有充⾜的空间，能为当下这seq_group的prefill阶段分配充⾜的物理

块，⽤于装其KV Cache。

•

⼀旦我们认为当下空间充⾜，则调⽤ self._allocate(seq_group) ⽅法，为
waiting队列中的这个seq_group实际分配物理块，这时我们就会运⽤到

BlockAllocator，并且BlockAllocator的类型不同（即是否做prefix caching），
allocate的⽅法也会不同。

•

这⾥我们做的只是给定⼀种“物理块的分配⽅案”，我们只是在制定这个seq_group
可以使⽤哪些物理块，但并没有实际往物理块中添加数据！“添加数据”这⼀步留到

这1步推理实际开始时，由CacheEngine按照这个⽅案，往物理块中实际添加KV 

Cache。

•

6.2.2. 为running/swapped队列中的seq_group分配decode需要的物
理块
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接下来我们考虑为running/swapped队列中的seq_group分配decode需要的物理块。

对于每个seq_group，在上1个推理阶段，我们对它下⾯的每个seq都产出了1个token。
所以在这个推理阶段，我们判断能否为这些seq_group分配物理块时，我们也会分成两
步：

调⽤ self.block_manager.can_append_slot(seq_group)self.block_manager.can_append_slot(seq_group)self.block_manager.can_append_slot(seq_group)self.block_manager.can_append_slot(seq_group) ⽅法，判断
是否⾄少能为这个seq_group下的每个seq都分配1个空闲物理块。如果可以则认为能
调度这个seq_group。

•

调⽤ self._append_slot(seq_group, blocks_to_copy)self._append_slot(seq_group, blocks_to_copy)self._append_slot(seq_group, blocks_to_copy)self._append_slot(seq_group, blocks_to_copy) ⽅法，实际分
配物理块。

•

同样，在这⾥我们依然要强调，调度器中只是给出了物理块的分配⽅案，并没有实际往

物理块中添加数据，添加数据这⼀步是CacheEngine照着这个⽅案来实际操作的。

6.3. CachedBlockAllocator

Bash
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# 
===================================================================
=======# 
===================================================================
=======
# 如果做了prefix caching，即使⽤的是CachedBlockAllocator
# 
===================================================================
=======
elif self.enable_caching:
    block = self.gpu_allocator.allocate(
        seq.hash_of_block(logical_idx),
        seq.num_hashed_tokens_of_block(logical_idx))

1

2

3

4

5

6

7

6.3.1. hash值的计算

Bash

block block block block ==== self.gpu_allocator.allocate self.gpu_allocator.allocate self.gpu_allocator.allocate self.gpu_allocator.allocate((((
         seq.hash_of_block(logical_idx),
         seq.num_hashed_tokens_of_block(logical_idx))

1

2

3

CachedBlockAllocatorCachedBlockAllocatorCachedBlockAllocatorCachedBlockAllocator 按照prefix caching的思想来分配和管理物理块。在前⾯

的介绍中，我们提过有些prompts中可能含有类似system message（例如，“假设你是⼀
个能提供帮助的⾏⻋导航”）E）等prefix信息，带有这些相同prefix信息的prompt完全可
以共享⽤于存放prefix的物理块，这样既节省显存，也不⽤再对prefix做推理。

hash值的计算就决定了这个prefix是否真的“相同”：当两个等待做prefill的seq拥有同

样的hash值时，说明它们共享⼀样的prompt，这时就可以重复利⽤已有的KV 

cache。
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hash的计算过程

Bash

# 逻辑块0的计算：
num_tokens = 0 * 4 + 4 = 4
token_tuple = (A, B, C, D)  # 前4个token
hash_value = hash(( (A,B,C,D), lora_id ))

# 逻辑块1的计算：
num_tokens = 1 * 4 + 4 = 8
token_tuple = (A, B, C, D, E, F, G, H)  # 前8个token
hash_value = hash(( (A,B,C,D,E,F,G,H), lora_id ))

# 逻辑块2的计算：
num_tokens = 2 * 4 + 4 = 12
token_tuple = (A, B, C, D, E, F, G, H, I, J, K, L)
hash_value = hash((token_tuple, lora_id))

# 逻辑块3的计算
num_tokens = 3 * 4 + 4 = 16
token_tuple = (A, B, C, D, E, F, G, H, I, J, K, L, M, N)  # 实际只有
14个
hash_value = hash((token_tuple, lora_id))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

6.3.2. 使⽤evictor管理物理块分配细节
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当⼀个物理块没有任何逻辑块引⽤时（例如⼀个seq刚做完整个推理），这时它理应
被释放。但是在prefix caching的前提下，我们的优化思想是：即使这个物理块当

前没有⽤武之地，可是如果不久之后来了⼀个新seq，它的prefix（例如system 
message）和这个物理块指向的内容⾼度⼀致，那么这个物理块就可以被重复使
⽤，以此减少存储和计算开销。

•

所以，我们设置⼀个驱逐器（evictor）类，它的free_tables属性将⽤于存放这些

暂时不⽤的物理块。

•

此时，该设备上全部可⽤的物理块 = 正在被使⽤/等待被使⽤的物理块数量 + 
evictor的free_tables中的物理块数量

•

在prefill阶段，当我们想创建⼀个物理块时，我们先算出这个物理块的hash值，然后
去free_tables中看有没有可以重复利⽤的物理块，有则直接复⽤

•

如果没有可以重复利⽤的hash块，那这时我们先检查下这台设备剩余的空间是否

够我们创建⼀个新物理块。如果可以，就创建新物理块。

•

如果此时没有⾜够的空间创建新物理块，那么我们只好从free_tables中驱除掉⼀个

物理块，为这个新的物理块腾出空间，驱逐策略如下：

•

先根据LRU（Least Recently Used）原则，驱逐较⽼的那个物理块◦
如果找到多个最后⼀次使⽤时间相同的⽼物理块，那么则根据

max_num_tokens原则（max_num_tokens即为6.3.1图例中的
num_tokens），驱逐其hash值计算中涵盖tokens最多的那个物理块。

◦

如果这些⽼物理块的LRU和max_num_tokens还是⼀致的话，那就从它们中随

机驱逐⼀个

◦

6.3.3. prefix的标准

看到这⾥，也许有个想法⼀直在你脑中徘徊：“使⽤prefix caching，是不是就意
味着两个seq的prompt必须完全⼀致，才可以重复利⽤物理块呢？”

下⾯我们再通过两个例⼦，帮助⼤家解答这个疑惑，也更好理解“prefix”的含义。
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假设seq0现在做完了prefill，产出蓝⾊的4块物理块。现在进来⼀个seq1，我们想知

道：seq1到底该怎么复⽤seq0的物理块？

当seq1刚进来时，我们先算好了它的逻辑块。现在要给每个逻辑块分配物理块。•
对每个逻辑块，当我们决定是否要给它分配⼀个新的物理块时（⼀个新的物理块意

味着占⽤了新的存储空间），我们先计算这个物理块的hash值。
•

按照这个流程，我们发现seq1的block0～2都可以复⽤seq0的（蓝⾊）•
但是hash(seq1 block3) != hash(seq0 block3)，因此我们需要为seq1 block3（红
⾊）开辟新空间。

•

可以发现，尽管seq0和seq1的prompt的⼤部分内容是相同的，但是seq1依然不能复⽤
seq0的prompt，这是因为KV cache的计算也需要考虑位置编码的原因。
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通过例1和例2，你现在是否已更好了解我们只对prefix计算hash值的原因了呢？我们

再⼩结⼀下vllm中hash值计算的⼀些要点：

vllm中，hash值的计算是block-level维度的•
vllm中，hash值的计算考虑了当前block及其之前所有block所维护的token值。这

样做是为了找到最⻓可复⽤的prefix。
•

6.3.4. decode阶段物理块的分配

在上⾯我们讲过UncachedBlockAllocator下为decode阶段分配物理块的⽅法（⽐较简
单），但是现在若使⽤CachedBlockAllocator，考虑物理块的复⽤问题时，情况就更

复杂⼀些了。

对于每个seq_group，在上1个推理阶段，我们对它下⾯的每个seq都产出了1个token。
所以在这个推理阶段，我们判断能否为这些seq_group分配物理块时，我们也会分成两
步：

（1）调⽤ self.block_manager.can_append_slot(seq_group)self.block_manager.can_append_slot(seq_group)self.block_manager.can_append_slot(seq_group)self.block_manager.can_append_slot(seq_group) ⽅法，
判断是否⾄少能为这个seq_group下的每个seq都分配1个空闲物理块。如果可以则认
为能调度这个seq_group。

•
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（2）调⽤ self._append_slot(seq_group, blocks_to_copy)self._append_slot(seq_group, blocks_to_copy)self._append_slot(seq_group, blocks_to_copy)self._append_slot(seq_group, blocks_to_copy) ⽅法，
实际分配物理块。

•

考虑下⾯这个使⽤parallel sampling做推理的例⼦，当n=2时，我们希望模型针对这⼀个
prompt，产出2个推理序列结果：

Bash

# Parallel 
Sampling("What is the meaning of life?",
SamplingParams(n=2, temperature=0.8, top_p=0.95, 
frequency_penalty=0.1))

1

2

3

⾸先，seq正常做完prefill（蓝⾊部分），我们⽤⻩⾊部分表示decode。•
开始做decode。根据copy-on-write机制，FG所在的block1此时被两个⼦序列的逻
辑块引⽤（ref_count = 2），所以它需要被拷⻉⼀份。这样我们就得到2个物理块，
⽤于装H0和H1。

•

在启动copy-on-write机制的同时，我们也要重新计算物理块的hash值。和prefill阶
段不同，在decode阶段，当这个物理块还没满的时候，我们会给它附⼀个相互不重

复的默认hash值（ from itertools import count()，hash_str = 
next(iter(count())) ）。

•
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我们会把附上hash值的物理块加⼊CachedBlockAllocator

的 cached_blockscached_blockscached_blockscached_blocks 属性中（参⻅3.3节代码中的讲解），我们说过，这个属性⽤
于记录当前正在被使⽤的物理块。

•

两个⼦序列继续做decode（⻛平浪静的美丽⽇⼦）•
当⼀个⼦序列⽤完当前物理块的所有slots时（例如当⼦序列1⽣成J0后），我们再

对这个物理块重新做hash计算，计算⽅式是hash(A~J0)。
•

拿着这个new_hash，我们去cached_blocks（当前正在被使⽤的物理块列表）和

free_tables（驱逐器的冷宫，曾经被使⽤的物理块列表）寻找。看看这两者中是否

存着相同hash值的物理块：

•

如果找到可以复⽤的物理块，我们就释放当前这个物理块，复⽤旧物理块◦
如果没有找到可以复⽤的物理块，我们就把当前这个物理块的旧hash值从

cached_blocks中释放掉，取⽽代之以新hash值。
◦

7.  参考⽂档
1. 猛猿：图解⼤模型计算加速系列之：vLLM核⼼技术PagedAttention原理
2. 猛猿：图解⼤模型计算加速系列：vLLM源码解析1，整体架构
3. 猛猿：图解⼤模型计算加速系列：vLLM源码解析2，调度器策略(Scheduler)
4. 猛猿：图解⼤模型计算加速系列：vLLM源码解析3，块管理器BlockManager（上
篇）

5. 猛猿：图解⼤模型计算加速系列：vLLM源码解析3，Prefix Caching
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留下了哪些困惑？

 互动⼆

「周⼀创作者⽇」已经陪⼤家⾛过

了⼀段时间，新年新⽓象！为更好建设

社区创作者专栏，欢迎各位在评论区留

下你的直觉感受和建议，你的每⼀条反

馈，都会成为我们栏⽬建设的重要参考

https://zhuanlan.zhihu.com/p/691038809
https://zhuanlan.zhihu.com/p/691045737
https://zhuanlan.zhihu.com/p/692540949
https://zhuanlan.zhihu.com/p/700780161
https://zhuanlan.zhihu.com/p/707228704
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欢迎在评论区分享你的想法，我们将从留⾔中精选 5 位⾛⼼分享的同学，送出

「AI+社区」电脑包，期待你的声⾳ 

恭喜以下五位同学获得AI＋社区电脑包

@罗亮亮 @唐佳丽 @刘宇 @赵宗星 @v_李轩

随后会有运营同学拉群进⾏地址收集和奖品发放哦~


